PPARδ Agonism Activates Fatty Acid Oxidation via PGC-1α but Does Not Increase Mitochondrial Gene Expression and Function

نویسندگان

  • Sandra Kleiner
  • Van Nguyen-Tran
  • Olivia Baré
  • Xueming Huang
  • Bruce Spiegelman
  • Zhidan Wu
چکیده

PPARdelta (peroxisome proliferator-activated receptor delta) is a regulator of lipid metabolism and has been shown to induce fatty acid oxidation (FAO). PPARdelta transgenic and knock-out mice indicate an involvement of PPARdelta in regulating mitochondrial biogenesis and oxidative capacity; however, the precise mechanisms by which PPARdelta regulates these pathways in skeletal muscle remain unclear. In this study, we determined the effect of selective PPARdelta agonism with the synthetic ligand, GW501516, on FAO and mitochondrial gene expression in vitro and in vivo. Our results show that activation of PPARdelta by GW501516 led to a robust increase in mRNA levels of key lipid metabolism genes. Mitochondrial gene expression and function were not induced under the same conditions. Additionally, the activation of Pdk4 transcription by PPARdelta was coactivated by PGC-1alpha. PGC-1alpha, but not PGC-1beta, was essential for full activation of Cpt-1b and Pdk4 gene expression via PPARdelta agonism. Furthermore, the induction of FAO by PPARdelta agonism was completely abolished in the absence of both PGC-1alpha and PGC-1beta. Conversely, PGC-1alpha-driven FAO was independent of PPARdelta. Neither GW501516 treatment nor knockdown of PPARdelta affects PGC-1alpha-induced mitochondrial gene expression in primary myotubes. These results demonstrate that pharmacological activation of PPARdelta induces FAO via PGC-1alpha. However, PPARdelta agonism does not induce mitochondrial gene expression and function. PGC-1alpha-induced FAO and mitochondrial biogenesis appear to be independent of PPARdelta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of histone deacetylation and AMP kinase in regulation of cardiomyocyte PGC-1α gene expression in hypoxia.

The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key determinant of cardiac metabolic function by regulating genes governing fatty acid oxidation and mitochondrial biogenesis. PGC-1α expression is reduced in many cardiac diseases, and gene deletion of PGC-1α results in impaired cardiomyocyte metabolism and function. Reduced fuel supply ge...

متن کامل

PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion.

Studies have shown that decreased mitochondrial content and function are associated with hepatic steatosis. We examined whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) overexpression and a subsequent increase in mitochondrial content and function in rat primary hepatocytes (in vitro) and Sprague-Dawley rats (in vivo) would comprehensively alter mitochondrial lipid m...

متن کامل

Diminished Hepatic Gluconeogenesis via Defects in TCA Cycle Flux in PPARγ Coactivator- 1α (PGC-1α)-Deficient Mice

The peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) is a highly-inducible transcriptional coactivator implicated in the coordinate regulation of genes encoding enzymes involved in hepatic fatty acid oxidation, oxidative phosphorylation, and gluconeogenesis. The present study sought to assess the effects of chronic PGC-1α deficiency on metabolic flux through the hepa...

متن کامل

Rosiglitazone-Induced Mitochondrial Biogenesis in White Adipose Tissue Is Independent of Peroxisome Proliferator-Activated Receptor γ Coactivator-1α

BACKGROUND Thiazolidinediones, a family of insulin-sensitizing drugs commonly used to treat type 2 diabetes, are thought to exert their effects in part by promoting mitochondrial biogenesis in white adipose tissue through the transcriptional coactivator PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator-1α). METHODOLOGY/PRINCIPAL FINDINGS To assess the role of PGC-1α in the cont...

متن کامل

Integrin-dependent Akt1 activation regulates PGC-1 expression and fatty acid oxidation.

BACKGROUND Poly-N-acetyl glucosamine nanofibers derived from a marine diatom have been used to increase cutaneous wound healing. These nanofibers exert their activity by specifically activating integrins, which makes them a useful tool for dissecting integrin-mediated pathways. We have shown that short-fiber poly-N-acetyl glucosamine nanofiber (sNAG) treatment of endothelial cells results in in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 284  شماره 

صفحات  -

تاریخ انتشار 2009